■ 通用型COG/COH片容

通用型COG片容屬于I類高頻電容器,其電容量非常穩定,幾乎不隨温度、電壓和時間的變化而變化。尤其 適用于高頻電子綫路。

- 特性
- * 具有高的電容量穩定性,在-55℃~125℃工作範圍内,其温度系數爲0±30ppm/℃、0±60ppm/℃。
- * 叠層獨石結構,具有高可靠性。
- * 優良的焊接性和耐焊性,適用于回流焊和波峰焊。
- 應用
- * 適用于各種高頻電子綫路。
- 産品規格型號表示方法

			J	500	Ν	Т
\neg	\top	\top	\top	T	\top	Т
1	2	3	4	(5)	6	7

①尺寸				
型號	英制(英寸)	公制(毫米)		
0402	0.04 × 0.02	1.00 × 0.50		
0603	0.06 × 0.03	1.60 × 0.80		
0805	0.08 × 0.05	2.00 × 1.25		
1206	0.12 × 0.06	3.20 × 1.60		

②介質種類			
代碼	介質材料		
CG	COG或NPO		
CH	СОН		

③標稱電容量(PF)			
表示方式	實際值		
100	10×10 ⁰		
101	10×10 ¹		
102	10×10 ²		

④誤差級别				
代碼	誤差			
J	± 5.00%			
G	± 2.00%			
С	± 0.25PF			
В	± 0.10PF			
D	± 0.50PF			

⑤工作電壓				
表示方法	實際電壓			
6R3	6.3V			
100	10V			
250	25V			
500	50V			

⑥端頭類别				
表示方法	端頭材料			
S	純銀端 <mark>頭</mark>			
C	純銅端頭			
N	三層電鍍端頭 (銀或銅層/鎳層/錫層)			

⑦包裝方式				
表示方法	包裝			
無標記	袋裝散包裝			
Т	編帶包裝			
В	塑料盒散包裝			

規格型號		尺寸(mm)			
英制表示	公制表示	L	W	Т	WB
0402	1005	1.00 ± 0.05	0.50 ± 0.05	0.50 ± 0.05	0.25 ± 0.10
0603	1608	1.60 ± 0.10	0.80 ± 0.10	0.80 ± 0.10	0.30 ± 0.10
0805	2012	2.00 ± 0.20	1.25 ± 0.20	0.80 ± 0.10 1.00 ± 0.10 1.25 ± 0.20	0.50 ± 0.25
1206	3216	3.20 ± 0.30	1.60 ± 0.20	0.80 ± 0.10 1.00 ± 0.10 1.25 ± 0.20	0.50 ± 0.25

■ COG/COH MLCC for general-use

COG MLCC for General-use is class I high frequency capacitor, its capacitance is very stable, almost will not change along with the temperature, voltage and time. Specially be suitable for high frequency circuits.

Features

- * The capacitance is very stable, its operating temperature is -55° C \sim 125 $^{\circ}$ C, within the range, the temperature coefficient is 0±30ppm/ $^{\circ}$ C,0±60ppm/ $^{\circ}$ C.
- * It has multi-layer monolithic structure, has high reliability.
- * It has good solderability and soldering resistance, suitable for flow/reflow soldering.

Application

- * It is suitable for all kinds of high frequency circuits.
- Product Part Number Expression

0805		<u>101</u>		5 <u>0</u> 0	N	7
,	2	3	4	5	6	7

①Dimensions				
Type British (Inch)		Metric (mm)		
0402	0.04×0.02	1.00×0.50		
0603	0.06×0.03	1.60×0.80		
0805	0.08×0.05	2.00×1.25		
1206	0.12×0.06	3.20×1.60		

②Dielectric Type			③Norr Capacitan	
Code	Dielectric		Expression Method	Actual Value
CG	COG or NPO		100	$10\times10^{\circ}$
CH	COH		101	10×10 ¹
			102	10×10^{2}

4 Capacitance Tolerance							
Code	Tolerance						
J	±5.00%						
G	±2.00%						
С	±0.25PF						
В	±0.10PF						
D	±0.50PF						

⑤Rated Voltage					
Expression Method	Actual Value				
500	50V				
250	25V				
101	100V				
201	200V				

©Te	rmination Type			
Expression Method	Termination Material			
S	Pure Silver			
С	Pure Copper			
N	Three Layers Plating Terminal (Silver or Copper layer/ Nickel layer /Tin layer)			

⑦Pa	Package Method						
Expression Method	Packaging						
No Mark	Bulk Packaging in a Bag						
Т	Taping Packaging						
В	Bulk Plastic Box Packaging						

• Outside Dimension

T	ype	Dimension (mm)					
British	Metric	1	W	т	WB		
Expression	Expression	L	VV	1	VVD		
0402	1005	1.00±0.05	0.50 ± 0.05	0.50 ± 0.05	0.25±0.10		
0603	1608	1.60±0.10	0.80±0.10	0.80±0.10	0.30±0.10		
0805	2012	2.00±0.20	1.25±0.20	0.80±0.10 1.00±0.10 1.25±0.20	0.50±0.25		
1206	3216	3.20±0.30	1.60±0.20	0.80±0.10 1.00±0.10 1.25±0.20	0.50±0.25		

• 電容量範圍

■ Capacitance Range

Item						CO	G/COH	MLCC	for	genei	ral-us	е								
DImension			0402					0603	3				0805				1	206		
Rated Voltage	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V	6.3V	10V	16V	25V	50V
Capacitance)																			
0.5PF																				
1PF																				
2PF																				
3PF																				
4PF																				
5PF																				
6PF																				
7PF																				
10PF																				
22PF																				
33PF																				
47PF																				
68PF															1					
100PF																				
120PF																				
150PF																				
180PF																				
220PF																				
330PF			A																	
470PF																				
560PF			7																	
680PF																				
1000PF 2200PF																				
2700PF																				
3300PF																				
4700PF																				
5600PF																				
6800PF																				
10nF																				
12nF																				
15nF																				
22nF																				
27nF																				
33nF																				
47nF																				

■ 通用型COG、COH、PH~SL可靠性測試方法

		標准		
編號	項目	通用型COG、 COH片容	通用型PH、RH、 SH、TH、UJ、 SL片容	測試方法
1	工作温度範圍	-55℃ ~ 125℃	-55℃ ~85℃	
2	外觀	1.瓷體顏色一致 2.芯片無可見損 3.瓷體無外露電 4.端電極無裂痕 表面氧化等。 5.端電極應無延 部分不超過端	遺傷,光滑平整。 遺傷,光滑平整。 遺極,裂痕,孔洞。 夏,孔洞,磨損及	※在≥10×倍以上的顯微鏡下觀察。
3	尺寸	 在規定尺寸範圍 	内	※使用千分尺或游標卡尺。
4	電容量	在規定偏差範圍	内	※測試儀器:HP42 <mark>78A電橋、HP4284電橋。</mark> ※測試條件: 1.測試温度: 25℃±5℃, 濕度:30%~75%。
5	損耗因數(D.F.)	Cr<5PF 5PF ← Cr<50PF 1.9 Cr ≥ 50PF	≤0.56% 5 [(150/Cr)+7]×1 <mark>0</mark> ⁻⁴ ≤0.15%	2.測試電壓:1.0±0.2V。 3.測試頻率:C<1000PF,1.0±0.1MHz; C≥1000PF,1.0±0.1KHZ
6	絶緣電阻 (I.R.)	C≤10nF Ri≥ C>10nF Ri•		※測試儀器:絶緣電阻測試儀(如:SF2511絶緣測試機)。 ※測試方法:施加額定工作電壓,在60±5秒內測量絶緣電阻。
7	耐電壓强度	>3×額定工作電	虚壓	※施加3倍額定工作電壓,持續 60±1 秒,未出現擊穿現象并且充電/放電電流低于50mA。
8	電容量温度特性	在工作温度範圍内符合電容器 特性温度系數要求		※首先進行預處理: 進行 150+0/-10℃熱處理 60±5分鐘, 然后在室温條件下放置 24±2 小時。 ※在 -55~125℃或者-55~85℃範圍內測試電容量, 其電容值相對于25℃時數值的變化率應在規定範圍內。
9	可焊性	75% 端電極覆蓋錫		※將電容器浸在乙醇和松香溶液中。然后浸入 有鉛235±5℃(無鉛245 ±5℃) 的混合焊錫 溶液 2±0.5 秒。浸入速度: 25±2.5mm/秒。
		外觀	無明顯缺陷	※首先進行預處理:進行 150+0/-10℃熱處理 60±5 分鐘,然后
		電容量變化率	< ± 5% 或 ± 0.5PF取兩 者中最大的	在室温條件下放置 24±2 小時。 ※然后按下表預熱電容器。將電容器浸入 260±5℃ 的混合焊錫溶
10	D.F. 同初始標准		同初始標准	液10±1 秒。再在室温條件下放置24±2 小時,然后進行測量。 浸入速度: 25±2.5mm/秒。
10	耐焊接熱	焊接熱 I.R.		浸入速度: 25±2.5mm/秒。※預熱條件如下:階段 温度 時間 1 100℃—120℃ 1分鐘 2 170℃—200℃ 1分鐘

\bullet General COG、COH、PH \sim SL MLCC reliability test method

		Stanc	lard					
Number	ltem	COG、COH MLCC for General-use	PH, RH, SH, TH, UJ, SL MLCC for General-use			Test Method		
1	Operating Temperature Range	-55℃~125℃	-55℃~85℃					
2	Appearance	1.Good ceramic I continuity. 2.The chips have damages and n smooth. 3.No exposed inr no cracks or ho 4.The outer electron cracks, hole surface oxidatic 5.Outer electrode or the prolongal half of that of th width.	no visual nust be very her- electrode, les. rode should have s, damages or on. no prolongation ation is less than	**Check by usin	g micro	scope ≥10×.		
3	Dimensions	Within the spe dimensions	cified	*Using microme	eter or v	ernier calipers	U	
4	Capacitance	Within the spe tolerance	cified	**Measuring Equipments:HP4278 capacitance meter,HP4284 capacitance,				
5	Dissipation Factor (DF)	Cr<5PF 5PF € Cr<50PF 1.5 Cr ≥ 50PF	≤0.56% [(150/Cr)+7] × 10 ⁻⁴ ≤0.15%	 *Measuring Conditions: 1.Measuring Temperature:25°C±5°C.Humidity: 30%~75%. 2.Measuring Voltage:1.0±0.2V. 3.Measuring Frequency:C<1000PF, 1.0±0.1MHz C≥1000PF, 1.0±0.1KHz 				
6	Insulation Resistance	C≤10nF Ri≥ C>10nF Ri⋅			is Sf251 nod:Mus	1 insulation resist	ance). ed voltage, ar	
7	Withstanding Volta <mark>ge</mark>	>3x rated con working voltag		*Must measure a seconds, no sho less than 50mA.	rt and th			
8	Capacitance Temperature Characteristic	Must meet the character temp coefficient requivithin the operatemperature ra	erature irements ating	*First, pre-heat: I then set it for 24:*Measure the cal capacitance cha be within the spe	±2 hours bacitance nge ratio	at room tempera e at -55 \sim 125 $^\circ$ C o comparing to that	ature. r -55∼85℃,	the
9	Solderability	Tin coverage should be 75% of the outer electrode			5°C(or 2∙ ic solder	45±5℃ leadless solution hanving	eutedtic sole lead for 2±	der
	Resistance to Soldering	Appearance	No defects visible	※First pre-heat: h 150+0/-10℃, th temperature.		t for 60±5 minu for 24±2 hours		
		Cap. Change ratio	≤±5%or±0.5PF (whichever is larger)	*Then pre-heat t following chart.	Dip the	capacitor into 26	60±5℃	. ;+
10		DF	Same as original spec					
		IR	Same as original spec	** Preheat condition	Stage	Temperature	Time	
					1	100℃—120℃	1minute	
					2	170℃—200℃	1minute	

編號	項目	標	准	測試方法
11	端電極結合强度	不應出現端頭脱	落或其它缺陷。	※使用混合焊錫將電容器焊接在圖 1 中所示的測試夾具(玻璃環氧樹脂板)上。然后沿箭頭方向施加 10N 的力。焊接應利用烙鐵或使用回流焊方法進行,而且應謹慎作業,以使焊接均匀且不會出現熱衝擊等不良現象。 10N,10±1秒速度:1.0mm/秒玻璃環氧樹脂板圖1
		外觀	無明顯缺陷	※將電容器焊接在測試夾具(玻璃環氧樹脂板)上。電容器應進行
		電容量	在規定偏差 範圍内	簡諧運動,其總幅值爲 1.5mm,頻率在近似 10—55Hz 之間均匀
		D.F.	同初始標准	變化。頻率範圍(從 10至 55Hz 再返回 10Hz)應在約 1分鐘内 完成。振動應在三個相互垂直方向各進行 2 小時(總計 6 小時)。
12	耐振動性			
13	抗彎曲性	不應出現裂縫或	其他缺陷。	※使用混合焊錫將電容器焊接在圖 3 中所示的測試夾具(玻璃環氧樹脂板)上,然后在圖 4 所示的方向加力。焊接應利用烙鐵或使用回流焊方法進行,而且應謹慎作業,以使焊接均匀且不會出現熱衝擊等不良現象。
14	温度循環	外觀	無缺陷或异常	※首先進行預處理:進行 150+0/-10℃熱處理 60±5分鐘,然后在室温條件下放置 24±2 小時。※按照下表中列出的四種熱處理方法執行五次循環。在室温條件下放置 24±2 小時,然后進行測量。

Number	Items	Standard		Test Method			
11	Adhesive Strength of Termination	No removal terminations defect shall	or other	**Solder the capacitor to the test jig (glass epoxy resin board) shown in Fig.1 using a eutectic solder. Then apply a 10N force inthe direction shown as the arrowhead. The aoldering shall be done either with an iron or using the reflow method and shall be conducted with care so that an iron or using the refow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock, etc. 10N,10±1s Speed:1.0mm/s Glss epoxy resinboard			
	Vibration Resistance	Appearance	No defects or abnormities	Solder the capacitor to the test jig (glass epoxy resin board). The capacitor should be subjected to a simple			
		Capacitance	Within the specified tolerance range	harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz, shall be traversed (from 10 Hz to 55 Hz then 10 Hz again) in approximately			
12		DF	Same as original spec	1 minute. This motion shall be applied for a period of 2 hours in each 3 mutually perpendicular directions (total is 6 hours).			
13	Bending Resistance	No cracks o defects shall		**Solder the capacitor to the test jig (glass epoxy resin board) shown in Fig.3 using a eutectic solder. Then apply a 10N force in the direction shown as Fig.4. The soldering shall be done either with an iron or using the reflow method and shall be conducted with care so that the soldering is uniform and free of defects such as heat shock, etc. **Force adding** **Fig. 3* **Fig. 4* **L×W** **Dimension** (mm)** **L×W** **Dimension** (mm)** **L×W** **Dimension** (mm)** **L×W** **Dimension** (mm)** **L×S×2.0 3.5 7.0 2.4 4 4.5×3.2 3.5 7.0 3.7 1.0 5.7×6.3 4.5 8.0 5.6			
14	Temperature Cycle	Appearance	No defects or abnormities	 **Pre-treatment: Heat-treat the capacitor for 60± 5minutes at 150+0/-10°C, then set it for 24 2 hours at room temperature. **Perform five cycles according to the four heat treatments listed in the following table. Set it for 24±2 hours at room temperature, then measure. 			

Same standa

編號	項目	横	票准	測試方法
14	温度循環	電容量 D.F. I.R.	± 2.5%或± 0.25PF,取兩者中最大的。同初始標准大于10000ΜΩ	熱處理方法如下表: 階段 温度(℃) 時間(分鐘) 1 最低工作温度±3 30±3 2 常温 2—3 3 最高工作温度±2 30±3 4 常温 2—3
15	濕度(穩態)	外觀 電容量 D.F. I.R.	無缺陷或异常	※在 40±2℃和 90—95% 相對濕度條件下放置500+24/-0小時。 然后將其移動到室温條件下恢復放置 24±2 小時,進行測量。
16	濕度負荷	外觀 電容量 D.F.	無缺陷或异常 ≤±5%或 ±0.5PF,取兩 者中最大的。 同初始標准 大于10000MΩ	※在 40±2℃和 90—95% 相對濕度條件下施加額定電壓 500+24/-0小時。然后將其移動到室温條件下放置 24±2 小時,進行測量。
17	壽命	外觀 電容量 D.F.	無缺陷或异常 ≤ ± 5%或 ± 0.5PF,取兩 者中最大的。 同初始標准 大于10000ΜΩ	※在上限温度下施加2倍的額定工作電壓1000±12小時,充放電電流不超過50mA。將其移動到室温條件下恢復放置24±2小時,進行測量。

Number	Item	Stan	dard	Test Method				
14	Temperature Cycle	Cap. Change ratio D.F. I.R.	$\stackrel{\leqslant}{\pm}2.5\%$ or $\stackrel{\pm}{\pm}0.25$ PF (whichever is larger) Same as original spec More than 10000M $^{\Omega}$	**Heat-treatment: stage temperature (°C) time (min.) 1 lowest opeating temperature±3 30±3 2 normal temperature 2-3 3 high operating temperature±2 30±3 4 normal temperature 2-3				
	Humidity Steady	Appearance	No defects or	\times Set the capacitor for 500+24/-0 hours at the condition of 40±2°C and 90-95% humidity. Then remove and set it				
	State	Cap. Change ratio	abnormities ≤±5% or ±0.5 PF (whichever is larger)	for 24 ± 2 hours at room temperature, then measure.				
15		D.F.	Same as original spec					
		I.n.	10000MΩ	CO.				
	Humidity Load	Appearance	No defects or abnormities	※Apply rated voltage to the capacitor for 500+24/-0 hours at the condition of 40±2℃ and 90-95% humidity.				
		Cap. Change ratio	≤±5% or ±0.5 PF (whichever is larger)	Remove and set it for 24±2 hours at room temperature, then measure.				
16		D.F.	Same as original spec					
	W	I.R.	M <mark>ore</mark> than 10000MΩ					
	Life Test	Appearance	No defects or abnormities	**Apply two times rated voltage to the capacitor for 1000±12 hours at the upper temperature limits, the				
		Cap. Change ratio	≤±5% or ±0.5 PF (whichever is larger)	charging current should be less than 50mA. Remove and set it for 24±2 hours at room temperature, then measure.				
17		D.F.	Same as original spec					
		I.R.	More than 10000MΩ					

■通用型片容特性曲綫

• COG和PH、RH、SH、TH、UH系列

温度系數圖

X7R温度特性

Z5U温度特性

Y5V温度特性

• 電容器偏壓特性圖

● 電容器老化特性圖

■ GENEREL-USE MLCC CHARCCTER PROFILES

 COG and PH、RH、SH、TH、UH siries temperature coefficent

Temperature

50°C

75℃

100℃

125℃

25℃

• DC Voltage Characteristics

Capacitance-AC Voltage

Capacitance change aging

ratio

-55℃

-25°C

■包裝

• 紙帶卷盤結構

* 適合 0402,0603, 0805, 1206 常規尺寸產品的紙帶尺寸

代號紙帶規格	А	В	С	D	E	F	G	Н	J	т*
0402	0.65	1.15	8.00	3.50	1.75	2.00	2.00	4.00	1.50-0/	低于
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.05	± 0.05	± 0.10	+0.10	0.80
0603	1.10	1.90	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.10
0805	1.45	2.30	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.10
1206	1.80	3.40	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.10

Package

Paper Tape Taping

*Dimensions of paper take taping for0402,0603, 0805, 1206

Code Paper size	А	В	С	D	E	F	G	Н	J	т*
0402	0.65	1.15	8.00	3.50	1.75	2.00	2.00	4.00	1.50-0/	Below
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.05	± 0.05	± 0.10	+0.10	0.80
0603	1.10	1.90	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	Below
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.10
0805	1.45	2.30	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	Below
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.10
1206	1.80	3.40	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	Below
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.10

■包裝

• 紙帶卷盤結構

*适合0805,1206,1210,1808,1812常规尺寸产品的塑胶带尺寸

代號紙帶規格	А	В	С	D	Е	F [*]	G	Н	J	Т
0805	1.55	2.35	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.50
1206	1.95	3.60	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.85
1210	2.70	3.42	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	+0.10	3.2
1808	2.20	4.95	12.00	5.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	+0.10	3.0
1812	3.66	4.95	12.00	5.50	1.75	8.00	2.00	4.00	1.50-0/	低于
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	+0.10	4.0

注意:*表示此處對尺寸的要求非常精確

• Embossed Taping

*Dimensions of embossed taping for 0805, 1206, 1210, 1808, 1812 type

Code Tape size	А	В	С	D	Е	F [*]	G	Н	J	Т
0805	1.55	2.35	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.50
1206	1.95	3.60	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.20	± 0.20	± 0.20	± 0.05	± 0.10	± 0.10	± 0.10	± 0.10	+0.10	1.85
1210	2.70	3.42	8.00	3.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	+0.10	3.2
1808	2.20	4.95	12.00	5.50	1.75	4.00	2.00	4.00	1.50-0/	低于
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	+0.10	3.0
1812	3.66	4.95	12.00	5.50	1.75	8.00	2.00	4.00	1.50-0/	低于
	± 0.10	± 0.10	± 0.10	± 0.05	± 0.10	± 0.10	± 0.05	± 0.10	+0.10	4.0

Note:The place with "*" means where needs exactly dimensions.

• 傳送帶的前后結構

• 卷盤尺寸(單位:mm)

• 尺寸代碼

А	В	С	D	Е	F	G
Ф178.00 ± 2.00	3.00	Ф13.00 ± 0.50	Ф21.00 ± 0.80	⊕50.00或更大	10.00 ± 1.50	12MAX
Ф330.00 ± 2.00	3.00	Ф13.00 ± 0.50	Ф21.00 ± 0.80	⊕50.00或更大	10.00 ± 1.50	12MAX

• Structure of leader part and end part of the carrier paper

• Reel Dimensions (unit:mm)

• Code

А	В	С	D	E	F	G
Φ 178.00 ± 2.00	3.00	Φ13.00 ± 0.50	Ф21.00 ± 0.80	Ф50.00 or max	10.00 ± 1.50	12MAX
Ф330.00 ± 2.00	3.00	Ф13.00 ± 0.50	Ф21.00 ± 0.80	Ф50.00 or max	10.00 ± 1.50	12MAX

■關于卷帶的説明

• 面膠剥離强度

標准: 0.1N<剥離强度<0.7N; 在剥離時, 紙帶不能有紙碎, 也不能粘在底、面膠上。

• 塑料盒散包裝

標示	А	В	Т	С	D	Е
尺寸	6.80 ± 0.10	8.80 ± 1.00	12.00 ± 0.10	15.00+0.10/-0	2.00 ± 0/-0.10	4.70 ± 0.10
標示	F	W	G	Н	L	
尺寸	31.50+0.20/-0	36.00+0/-0.2	19.00 ± 0.35	7.00 ± 0.35	110.00 ± 0.70	5.00 ± 0.35

• 包裝數量

尺寸		包裝形式和	和數量		
76.0	紙帶卷盤	膠帶卷盤	塑料盒散裝	一般散裝	
0402	10000		20000	5000	
0603	4000		15000	5000	
0805	4000	3000	10000	5000	
1206	4000	$T \le 1.35 \text{mm} 3000 T > 1.35 \text{mm} 2000$	5000	5000	
1210		T≤1.80mm 2000 T>1.80mm 1000		2000	
1808		2000		2000	
1812		$T \le 1.85 \text{mm} 1000 T > 1.85 \text{mm} 500$		2000	
2225		500		500	
3035		500		· ·	

注意:包裝的形式和數量可根據客户的要求來定。

■ TAPING SPECIFICATION

Top cover tape peeling strength

(A)Paper Taping (b)Cover tape peeling direction

Standard: 0.1N<peeling forc<0.7N; No paper dirty remains on the scotch when peeling, and no sticks to top and bottom cover tape.

Bulk Case Package

Symbol	А	В	Т	С	О	E
Dimension	6.80±0.10	8.80 ± 1.00	12.00±0.10	15.00+0. 10/-1	2.00±0/-0.10	4.70±0.10
Symol	F	W	G	Н	L	
Dimension	31.50+0.20/-0	36.00+0/-0.2	19.00±0.35	7.00±0.35	110.00±0.70	5.00±0.35

Pack Quantity

Size	Paka	ging method and c	quantity	
3120	Paper tape taping	Plastistic embossed taping	Bulk plastic box packaging	Normal bulk packaging
0402	10000		20000	5000
0603	4000		15000	5000
0805	4000	3000	10000	5000
1206	4000	$T \le 1.35 \text{mm} 3000 \\ T > 1.35 \text{mm} 2000$	5000	5000
1210		T≤1.80mm 2000 T>1.80mm 1000		2000
1808		2000		2000
1812		T≤1.85mm 1000 T>1.85mm 500		2000
2225		500		500
3035		500		

Note: We can choose packing style and quantity can be according to the customer's requirement.

■通用型	型片式電容使用注意事	項								
階段	預防		注意事項							
1綫路設計	使用環境的確認: 醫療器械、航空用器、原子彈反應器如果出現故障,會對人的生命和整個社會造成巨大的損壞。因此用于這些設備的電容器必須具有很高的可靠性和安全性,并且比用于普通應用的電容器元件的要求更高,其區別也很明顯。	工作電壓 1.	電容器的那么兩個壓和脉循甚至在供	這壓的確認 工作電壓 剛峰值電壓 可電壓的電 給的電壓	應比其額定電 之和應小于的 路,它們的崎 低于額定電壓 快,那么電容	f選擇的電容 锋值電壓之和 逐值時,如果電	器的額定值 也應低于電 電路中使用的	。對于同時 容器的額深 的高頻 AC	持使用 AC電 定電壓。	
2. PCB 板的設 計	計) 當電容器被安裝在 PCB板上后,所使用的焊料 的量(焊盤的大小)會直接 影響電容器的性能。因此在 設計焊盤時必須考慮到以 下幾點: 1. 所用焊料的量的 大小會影響芯片 抗機械應力的能 力,從而可能導 致電容器破碎或	同時 ¹ 以下)	也給出了不為推薦使用	S合理的基 的 PCB」	整板以防止说板設計圖。 上焊盤的尺寸 片			持會超出元	件的端頭)	
	開製。因此在設	類型	1 (0603	0805	1206	1210			
	計基板時,必須慎重考慮焊盤的	尺		1.60	2.00	3.20	3.20			
	大小和配置,這			0.80	1.25	1.60	2.5			
	些對組成基板的	А	0.8	8~1.0	1.0~1.4	1.8~2.5	1.8~2.5	5		
	焊料的量有着决	В	0.	5~0.8	0.8~1.5	0.8~1.7	0.8~1.7	7		
	定的作用。	С	0.0	6~0.8	0.9~1.2	1.2~1.6	1.8~2.5	5		
	2. 如果不止一個元									
	件被連續焊接在	推薦	用于回流	焊接的焊盘	盤尺寸(單位	:mm)				
	同一基板或焊盤	類型	0402	0603		1206	1210	1812	2225	
	上時,焊盤的設	尺 <u>L</u> W	1.10	1.60 0.80	2.00 1.25	3.20 1.60	3.20 2.50	4.50 3.20	5.70 6.30	
	計應可以使每個		15~0.55						3.7~ 4.7	

類	型	0402	0603	0805	1206	1210	1812	2225
尺	L 1.10		1.60	2.00	3.20	3.20	4.50	5.70
寸	W	0.50	0.80	1.25	1.60	2.50	3.20	6.30
Α	0.45	~0.55	0.6~0.8	0.8~1.2	1.8~ 2.5	1.8~2.5	2.5~3.5	3.7~ 4.7
В	0.40	~0.50	0.6~0.8	0.6~1.2	0.6~1.5	0.6~1.5	1.0~1.8	1.0~ 2.3
С	0.45	~0.55	0.6~0.8	0.9~1.6	1.2~2.0	1.8~3.2	2.3~3.5	3.5~ 5.5

過量的焊料會影響芯片耐機械應力的能力。因此在設計基板時,需注意這些。

元件的焊接點被 阻焊區隔離開。

■ Precautions for the use of general MLCC

Stages	Precaution	Technical considerations										
1.Circuit	Verification of operating	Electric	al rati	ing an	d performa	ance:						
Design	environment:	Operat	ing Va	oltage	(Verificatio	n of Rated	voltage))				
	If there were any malfunction	1.	The o	peratii	ng voltage	for capacito	ors mus	st alv	ways be lo	ower than tl	neir	
	in medical equipment,	rated v	alues									
	spacecraft or nuclear	If a	ın AC	voltag	je is loaded	d on a DC v	oltage,	the	sum of th	e two peak	volta	ages
	reactors, etc. it will causes	should	be lo	wer th	an the rate	ed value of t	he cap	acito	or chosen	. For a circu	uit	
	serious damage to human life or	r where both an AC and a pulse voltage may be present, the sum of their			pea	.k						
	social ramifications. For this	voltage	s sho	uld als	so be lowe	r than the c	apacito	r's r	ated volta	ge.		
	reason , any capacitors to be	2.	Even i	if the a	applied volt	age is lowe	er than t	he r	ated value	e, the		
	used in such equipments must				ency AC							
	have very high safety and	voltage or a pulse voltage having rapid rise time is present in the circu			the circuit.							
	reliability considerations and											
	must have high requirements											
	than capacitor normal for											
	applications.											
2.PCB	Pattern configurations	1. Th	e follo	wing	diagrams a	and tables s	show so	ome	example	s of recom	men	ided
Design	(Design of Land-patterns)	patterns to prevent excessive solder amounts (larger fillets will exten			nd							
	When capacitors are mounted	ab	ove th	ne cor	npone'nts e	end termina	itions).					
	on a PCB, the amount of solder	Examples of improper pattern designs are also shown.										
	used (size of fillet) can	Recom	meno	ded la	nd dimens	ions for PC	В					
	directly affect capacitor											
	performance. Therefore, the				Chip	Land						
	following items must be						Solder	-res	sis			
	carefully considered in the	_			++- +	<u> </u>	1					
	design of solder land patterns:	C	5		'							
	(1)The amount of solder applied			-			┨┝)				
	can affect the 8ability of chips				ВА	В						
	to withstand mechanical			_	>	> < - >						
	stresses, which may lead to	Recon	nmen	d land	d dimensio	ons for wav	e-solde	ering	g (unit: m	m)		
	breaking or cracking.	Ту	ре		0603	0805		1:	206	1210		
	Therefore, when designing	Siz	L		1.60	2.00		3	.20	3.20		
	land-patterns it is necessary	е	W		0.80	1.25		1	.60	2.50		
	to consider the appropriate	A	١	0.8	30~1.00	1.00~1.4	40	1.80	~2.50	1.80~2.	50	
	size and configuration of the	Е	3	0.5	50~0.80	0.80~1.	50 (08.0	~1.70	0.80~1.	70	
	solder pads, which determines			0.6	60~0.80	0.90~1.2	20 -	1.20	~1.60	1.80~2.	50	
	the amount of solder necessary	Recon	nmen	d land	d dimensio	ons for reflo	w-solc	lerin	ıg (unit: m	nm)		
	to form the fillets.	Тур	е	0402	0603	0805	120)6	1210	1812	2:	225
	(2) When more than one part	Size	-	1.00	1.60	2.00	3.20		3.20	4.50		5.70
	is jointly soldered onto the	A		0.50 ~0.55	0.80 0.6~0.8	1.25 0.8~1.2	1.60 1.8~2	_	2.50 1.8~2.5	3.20 2.5~3.5	_	6.30 ~4.7
	same land or pad, the pad must	В	0.40	~0.50	0.6~0.8	0.6~1.2	0.6~1	.5	0.6~1.5	1.0~1.8	1.0	~2.3
	be designed so that each	C Excess			0.6~0.8	0.9~1.6	$1.2 \sim 2$			2.3~3.5		
	components soldering point is					e ability of o						
	separated by soldering-resist.	петет	ore, p	nease	take prop	er precaut	ioris Wr	ıen	uesignin(y iai iu-patt	ems	

Stages	Precautions	Technical considerations		
		Examples of good	d and bad solder applicat	ion.
		Items	Recommended	
		Mixed mounting of		
		SMD and leaded	4	
		components		
		Component	<u> </u>	F C
		placement close to the chassis		
		Hand soldering of leaded components near mounted components		
		Horizontal component placement	HH	THE STATE OF THE S
	Pattern configurations (Capacitor layout on panelized [breakaway] PC boards) After capacitors have been mounted on the boards, chips can be subjected to mechanical stresses in subsequent manufacturing processes (PCB cutting, board inspection, mounting of additional parts, assembly into the chassis, wave soldering the reflow- soldering boards etc.). For this reason, planning pattern configurations and the position of SMD capacitors should be carefully performed to minimize stress.	should be located to mi warp or deflection. Not reconstruct the capacite that the amount of mediayout, The example be solved. Perforation A Slit	commended Recommended Recommended Property of the breakaway PC chanics stresses given will below shows recommendated PC Change of the property	board, it should be noted vary depending on capacitotions for better design.

階段	預防		注意事項	
		不同而不同。以下方法	按應力從小到大進行排列:	機械應力的大小因使用的方法 推板、割裂、V 形凹槽、接 項考慮到 PCB板的分割方法。
3. 自動安裝 應考慮到的問題	調節安裝機器: 在將電容器安裝在 PCB板上時,不能讓電容器 承受過量的衝擊力。應定期 對安裝機器進行維修和檢 查。	從而導致電容器破裂。 下各點: (1) 在校正F 表面水平 (2) 吸拾壓力 (3) 爲了减少	爲了避免上述現象的發生, PCB板的偏差后,應將吸拾 E位置。 D應調節至1到 3N之間。	會對電容器產生過大的壓力, 在降低吸拾管時,要注意以 管的低限位調節到 PCB板的 或的變形程度,支撑釘應放在 較好的例子。
		單面安裝	不推薦使用	推薦使用
			種現象的發生,在對處于個	支撑釘 字器受到機械應力的衝擊而缺停止狀態下對位釘間寬度和支

Stages	Precautions	Technical considerations		
		3. When breaking PC boards along their perforations, the amount of mechanical stress on the capacitors can vary according to the method used. The following methods are listed in order from least stressful to most stressful: push-back, slit, V-grooving, and perforation. Thus, any ideal SMD capacitor layout must also consider the PCB splitting method.		
3.Conside rations for automatic placement	Adjustment of mounting machine Excessive impact load should not be imposed on the capacitors when mounting onto the PC boards.The maintenance and inspection of the mounting devices must minimize the stresses	 If the pick-up nozzle is lower than the low limit, too much force may be imposed on the capacitors, causing damage. To avoid this, the following points should be considered before lowering the pick-up nozzle: The lower limit of the pick-up nozzle should be adjusted to the surface level of the PC board after correcting for deflection of the board. The pick-up pressure should be adjusted between 1 and 3 N static loads. To reduce the amount of deflection of the board caused by impact of the pick-up nozzle, supporting pins of back-up should be used the under PC board. The following diagrams show some typical examples of good pick-up nozzle placement: 		
		Not recommended Single-sided mounting Double-sided mounting 2. As the alignment pin wears out, adjustment of the nozzle height can cause chipping or cracking of the capacitors because of mechanical impact on the capacitors. To avoid this, should have periodically inspection, maintenance, repair and change about the alignment pin width and supporting pins, and all this actions should be done under stopped position.		

階段	預防	注意事項
3.自應到題	粘着劑的選用: 在焊接安裝電容器之前,用粘 着劑將電容器固定在基板上,這將 導致電容器的特性降級,除非對以 下因素進行合理的檢查:基板的大 小、粘着劑的類型和用量、硬化的 温度和時間。因此,用户在使用粘 着劑時,要注意其用法和用量。	1. 一些粘着劑會減少電容器的絕緣。粘着劑和電容器收縮率的不同會在電容器上產生應力并導致開裂。甚至板上過多或過少的粘着劑會影響元件的安裝。因此在使用粘着劑時應注意以下事項: (1) 要求粘着劑具有的特性: a. 在安裝和焊接過程中,粘着劑應有足够大的力來支撑板上的元件。 b. 粘着劑在高温下要有充足的强度。 c. 粘着劑要有很好的粘稠度 d. 粘着劑應在其使用期限前使用 e. 粘着劑應可快速硬化。 f. 粘着劑不能被雜質污染 g. 粘着劑要有很好的絕緣特性 h. 粘着劑不能有毒或不能發出有毒的氣體。
		a 最小 0.3 mm b 100~120μ m c 粘着劑不能接觸到焊區 電容固化后

Stages	Precautions	Technical considerations
3.Considera tions for automatic placement	Selection of Adhesives 1. Mounting capacitors with adhesives in land patterns, before the soldering stage, may lead to degraded capacitor characteristics unless the following factors are appropriately checked: the size of land patterns, type of adhesive,	Some adhesives may cause reduced insulation resistance, The difference between the shrinkage percentage of the adhesive and that of the capacitors may result in stresses on the capacitors and lead to cracking. Moreover, too little or too much adhesive applied to the board may adversely affect component placement, so the following precautions should be noted in the application of adhesives. (1) Required adhesive characteristics a. The adhesive should be strong enough to hold parts on the board during the mounting & solder process. b. The adhesive should have sufficient strength at high temperatures.
	amount applied, hardening temperature and hardening period. Therefore, users must pay attention to the using method and using amount of adhesives during using the adhesives.	 c. The adhesive should have good coating and thickness consistency. d. The adhesive should be used during its prescribed shelf life. e. The adhesive should harden rapidly. f. The adhesive must not be contaminated. g. The adhesive should have excellent insulation characteristics. h. The adhesive should not be toxic and have no emission of toxic gasses.
		2.The recommended amount of adhesives is as follows. Figure 0805/1206 case sizes as examples a 0.3 mm min b 100~120 \(\mu\) m c Adhesives should not contact the pad After capacitors are bonded
		Amount of adhesive a a b

階段	預防				注意事項				
4.焊接			1.活化!	助焊劑中的鹵	化物過多或使	用了高酸性的	 り助焊劑,那		
		么焊接后過多的殘留物會腐蝕電容器端頭電極或降解電容器表							
			面的絶緣。						
					助焊劑大量的				
			從而使電容	器可焊性受到	削破壞性的影響	響。 應盡可能》	咸少助焊劑		
			的用量,推	薦使用助焊劑	氣泡體系。				
			3.由于》	容水性助焊劑	的殘留物易溶	于空氣中的才	k,因此高濕		
			條件下電容	器表面上的殘	留物會導致電	容器絶緣下區	後并影響電		
					了 了溶水性助焊劑				
						1) 时,女何加1	田总用ル刀		
		法和所使用 	的機器的能力	0					
		焊接時	的預熱處理:						
		加熱: 在焊	接前應對片式	、 陶瓷元件在	100到 130℃7	下預熱。			
					的温度差异不				
			式電容器曝放在快速或集中致熱或快速致冷的條件下,會受到						
		熱衝擊的影響。因此在焊接過程中要特別注意防止電容器受到							
		過量熱衝擊	的影響。						
		 推薦使用的焊	接方式						
		32/00/2013/2013							
			規格尺寸	温度特性	額定電壓	容量範圍	焊接方法		
		A		NPO	1		R		
		0001		,					
		2	0201	X7R	/		R		
	1	4(0201	X7R Y5V	/ / /		R		
	1	1	0201	X7R	/ / / /		R		
	M	1		X7R Y5V NPO X7R Y5V	/ / / /		R R R R		
	N	1		X7R Y5V NPO X7R	/ / / / /		R R R R R		
110	M	**	0402	X7R Y5V NPO X7R Y5V	/ / / / / /	C≥1μF	R R R R R R/W		
11	M	**		X7R Y5V NPO X7R Y5V NPO X7R		C<1μF	R R R R R		
	W	**	0402	X7R Y5V NPO X7R Y5V NPO	/ / / / / /		R R R R R/W R R/W		
11	M	***	0402	X7R Y5V NPO X7R Y5V NPO X7R		C<1µF C≥1µF C<1µF	R R R R R R R/W R/W R R/W R R/W		
	M		0402	X7R Y5V NPO X7R Y5V NPO X7R		C<1 µF C≥1 µF C<1 µF / C≥4. 7 µF	R R R R R R R/W R R/W R R/W R R/W R R/W R/W		
			0402	X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R	/	C<1μF C≥1μF C<1μF / C≥4.7μF C<4.7μF	R R R R R R R/W R R/W R R/W R R/W R/W R/		
			0402	X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO	1	C<1 µF C≥1 µF C<1 µF / C≥4.7 µF C<4.7 µF	R R R R R R R R/W R R/W R R/W R/W R/W R/		
			0402	X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R	/	C<1μF C≥1μF C<1μF / C≥4.7μF C<4.7μF	R R R R R R R/W R R/W R R/W R R/W R/W R/		
			0402 0603 0805	X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R	/	$C<1 \mu F$ $C\geqslant 1 \mu F$ $C<1 \mu F$ $C<4.7 \mu F$ $C<4.7 \mu F$ $C\geqslant 1 \mu F$ $C\geqslant 1 \mu F$ $C<1 \mu F$	R R R R R R R R/W R R/W R R/W R R/W R/W		
			0402	X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R	/	$C<1 \mu F$ $C\geqslant 1 \mu F$ $C<1 \mu F$ $C<4.7 \mu F$ $C>4.7 \mu F$ $C\geqslant 1 \mu F$ $C>1 \mu F$ $C<1 \mu F$ $C\geqslant 10 \mu F$ $C<10 \mu F$	R R R R R R R R/W R R/W R R/W R/W R R/W R R/W R R/W R R/W R R/W R/W		
			0402 0603 0805	X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R	/	$\begin{array}{c} \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!4.7\mu\text{F} \\ \text{C}\!\!<\!\!4.7\mu\text{F} \\ \text{C}\!\!>\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \end{array}$	R R R R R R R R/W R R/W R R/W R/W R		
			0402 0603 0805	X7R Y5V NPO X7R	/ / / / /	$C<1 \mu F$ $C\geqslant 1 \mu F$ $C<1 \mu F$ $C<4.7 \mu F$ $C>4.7 \mu F$ $C\geqslant 1 \mu F$ $C>1 \mu F$ $C<1 \mu F$ $C\geqslant 10 \mu F$ $C<10 \mu F$	R R R R R R R/W R R/W R R/W R/W R R/W R/W		
			0402 0603 0805	X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R Y5V NPO X7R	/ / / / /	$\begin{array}{c} \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!4.7\mu\text{F} \\ \text{C}\!\!<\!\!4.7\mu\text{F} \\ \text{C}\!\!>\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \end{array}$	R R R R R R R R/W R R/W R R/W R/W R R/W R R/W R R/W R/W		
			0402 0603 0805	X7R	/ / / / /	$\begin{array}{c} \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!4.7\mu\text{F} \\ \text{C}\!\!<\!\!4.7\mu\text{F} \\ \text{C}\!\!>\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \end{array}$	R R R R R R R/W R R/W R R/W R/W R R/W R/W		
			0402 0603 0805 1206 ≥1210 焊接方式: R-	X7R	/ / / / /	$\begin{array}{c} \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!4.7\mu\text{F} \\ \text{C}\!\!<\!\!4.7\mu\text{F} \\ \text{C}\!\!>\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!<\!\!1\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \text{C}\!\!>\!\!10\mu\text{F} \\ \end{array}$	R R R R R R R/W R R/W R R/W R/W R R R/W R R R/W R R R		

Stages	Precautions		Teo	chnical considera	ations	
4.Soldering	1.	activate residue a or degra 2. Flux is us flux is ap detrimer it is reco 3. Since the in the air condition affect the capability selecting Preheating w Heating: Preheating: The shoul Ceramic chip or concentrate be conducted.	o much halogenate the flux, or highly act after soldering may dation of insulation sed to increase sold plied, a large amountally affect solderate mmended to use a seresidue of water-se, the residue on the ms may cause a degree reliability of the copy of the machines up water-soluble flux, hen soldering neat the chips at 100 temperature differed not be greater that o capacitors are susted heating or rapid d with great care so thermal shock.	cidic flux is used, ar lead to corrosion or resistance on the state of the state of flux gas may bility. To minimize the flux-bubbling system is coluble flux is easily surface of capacitor gradation of insulation mponents. The clear is easily asked should also be since between the column of the	n excessive amount of the terminal electurface of the capadering, but if too make amount of flux areas. dissolved by water or in high humidition resistance and aning methods an exconsidered careful or soldering. Somponents and clusters of the soldering proportion or the soldering proportion of the soldering proportion.	nt of trodes acitors. nuch ay applied, er content y therefore d the ully when eaning proces used to rapid cess must
		0201 0402 0603 0805	Temperature Characteristics NPO X7R Y5V NPO X7R	RatedVoltage / / / / / / / / / / / / / / / / / /	Capacitance $\begin{array}{c} \text{C}\!$	Soldering Method R R R R R R R R R R/W R R/W R R/W R/W
		≥1210 Soldering	X7R Y5V g method: R—Ref W—Wa	/ /flow Solering ave Soldering	/	R R

階段	預防	
階段 4.焊接	預防	推薦使用的焊接條件: [回流焊接] (温度曲綫) 温度 (C) 300 250 200 150 100 *** 大于1分鐘 大于1分鐘10秒鐘內 冷却 警告: 1. 理想的焊料量應爲電容器厚度的1/2或1/3。,如下圖所示: 1/2T - 1/3T 電容 焊錫 下推薦的時間。 [波峰焊接] 温度曲綫 温度 (C) 300 250 200 150 100 50 *** 大于1分鐘 3秒內 冷却
		警告: 1. 確保電容器已經預熱充分。 2. 電容器和熔化的焊料之間的温度之差不能大于100到130℃ 3. 焊接后的冷却方法應盡可能是自然冷却 4. 指定僅可用回流焊接的電容器不能用波峰焊接。

Stages	Precautions	Technical considerations
Stages 4. Soldering	Precautions 1.	Recommended conditions for soldering [Re-flow soldering] Temperature (°C) 300 Preheating 230°C 200 150 100 Over 1 minute Over 1 minute Within Gradual cooling
		Cautions 1. The ideal condition is to have solder mass (fillet)controlled to 1/2 to 1/3 of the thickness of the capacitor, as shown below 1/2T~1/3T Capacitor Solder Tin PCB board Because excessive dwell times can detrimentally affect solderability, soldering duration should be kept as close to recommended times as possible. [Wave soldering] Temperature profile Temperature (°C) 300 250 200 150 200 20

階段	預防	注意事項
		[手工焊接] 温度 (°C) 300 250 200 150 100 警告: 1. 使用的烙鐵的尖頂的直徑最大爲 1.0mm。 2. 烙鐵不能直接碰到電容器上。
5. 清洗	清洗條件: 1. 在安裝完所有的電容器,在清洗PCB板時,應根據所使用的助焊劑和清洗的目的(如爲了除掉焊接時殘留的助焊劑還是生產過程中的其他材料)來選擇適當的清洗溶劑。 2. 應對清洗條件進行核對并取人清洗過程不電容器的特性影響	1. 如果使用不恰當的溶劑,會使其它物質如助 焊劑殘留物粘到電容器或破壞電容器的外部塗層,從 而導致電容器的電性能下降(特別是絕緣)。 2. 不恰當的清洗條件(清洗不够,或過渡清洗) 會破壞電容器的電性能。 (1)過渡清洗: 在用超聲波清洗的情况下,輸出的能源太大則會使 PCB板承受過量的振動,這會導致電容或焊接點開 裂,或降低端電極强度。因此要特別注意以下檢查條 件: 超聲波輸出:低于 20W/L 超聲波頻率:低于 40KHz 超聲波清洗時間:5分鐘或更少

Stages	Precautions	Technical considerations
		[Hand soldering]
		Temperature (°C) 300 Preheating 250 200 150 100 Over 1 minute Within Gradual cooling Caution 1. Use soldering iron with a maximum tip diameter of 1.0 mm. The soldering iron should not directly touch the capacitor. [Wave soldering]
5. Cleaning	Cleaning conditions	1. The use of inappropriate solutions can cause foreign substances such
	1. When cleaning the PC board after the Capacitors are all mounted, select the appropriate cleaning solution according to the type of flux used and purpose of the cleaning (e. g. to remove soldering flux or other materials from the production process.) 2. Cleaning conditions should be determined after verifying. Make sure that the cleaning process does not affect the capacitors characteristics.	outer coating ,resulting in a degradation of the capacitor's souter coating ,resulting in a degradation of the capacitor's selectrical (especially insulation resistance). 2.Inappropriate cleaning conditions (insufficient or excessive cleaning) may detrimentally affect the performance of the capacitors. (1)Excessive cleaning In the case of ultrasonic cleaning, too much power output can cause excessive vibration of the PC board which may lead to the cracking of the capacitor or the soldered portion, or decrease the terminal electrodes, strength, thus the following conditions should be carefully checked; Ultrasonic output Below20W/L Ultrasonic frequency Below 40KHZ Ultrasonic washing period 5min or less

階段	預防	注意事項
6.清洗后處理工作	一些樹脂含有腐蝕性氣體或化學反應氣體會保留在 樹脂中,在硬化期或在正常儲存温度下,均會影響破 壞電容器的性能。 當樹脂硬化的温度高于電容器的運行温度時,大 量的熱會産生應力從而導致電容器受到損壞或破壞。 因此不能推薦使用此類樹脂、熔化材料等。	
7. 處理	切割 PCB板(沿着接縫孔分割開) 1. 在安裝完電容器和其它元件后,分割 PCB板時,注意不能在板上施加任何力。 2. 板的分割不能用手工分割,應使用合適的設備	機械方面應注意的事項: 注意不能主電容器承受過量的機械衝擊 (1)如果電容器掉在地上或掉在硬物上,則不 能再使用這些電容器。 (2)在處理安裝板時,注意安裝元件不能碰到 或撞到其它板或元件上。
8. 儲存條件	儲存 1. 爲了保持端電極的可焊性和保證包裝材料處于良好的條件狀態,要注意監控好電容器儲存區域的温度和濕度控制。推薦的條件: 温度: ○○40° С 濕度: 低于70%室温必須低于40° С。但即使在理想儲存條件下存放,電容器端頭可焊性也會隨着時間的推移而下降,因此電容器應在發貨之日算起6個月內使用。包裝材料應存放在不含氯或硫的空氣中。 2. 高介電常數的電容器的容量值將隨着時間的推移而下降,因此在設計電路時要考慮到這一點。如果電容器的容量值减少了,在150° C的條件下對電容器進行預熱,那么電容器的容量值會恢復到初始值。	如果將電容器存放在高温和高濕的環境下,電容器的端電極就會被氧化,從而導致其可焊性下降;另外,在這種儲存條件下,電容器的編帶/包裝材料會受到破壞。出于這個原因,電容器應在自發貨之日算起6個月內使用。如果超出了這個期限,在使用電容器之前要對其可焊性進行檢驗。

Stages	Precautions	Technical considerations
6.Post cleaning Processes	With some type of resins a decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or even while left under normal storage conditions will result in the deterioration of the capacitor 's performance. 1. When a resin's hardening temperature is higher than the capacitor 's operating temperature. The stresses generated by the excess heat may lead to capacitor damage or destruction. The use of such resins molding materials is not recommended.	
7. Handling	Breakaway PC boards (splitting along perforations) 1. When splitting the PC board after mounting capacitors and other components, care is required so as not to give any stresses of twisting to board. 2. Board separation should not be done manually, but by using the appropriate devices.	Mechanical considerations 1. Be careful not to subject the capacitors to excessive mechanical shocks. (1) If ceramic capacitors are dropped onto the floor or a hard surface, they should not be used. (2) When handling the mounted boards, be careful that the mounted components do not come in contact with or bump against other boards or components.
8.Storage Condition s	decreased as time passes, so ceramic chip can delivery. **The packaging material should be kept when	1. If the parts are stored in a high temperature and humidity environment, problems such as reduced solderability caused by oxidation of terminal electrodes and deterioration of taping/packaging materials may take place. For this reason, components should be used within 6 months from the rime of delivery. If exceeding the above period, please check solderability before using the capacitors. Inder ideal storage conditions capacitor electrode solderability pacitors should be used within 6 months from the time of the nochlorine or sulfur exist in the air. Stant capacitors (type 2&3) will gradually decrease with the
	Passage of time, so this should be taken into consideration in the circuit design. If such a capacitance reduction occurs, a heat treatment of 150°C for 1 hour will return the capacitance to its initial level.	